1.Indelicato, P. & Karpov, A. Sizing up atoms. Nature 498, 40–41 (2013).ADS
CAS
Google Scholar
2.Nazarewicz, W. The limits of nuclear mass and charge. Nat. Phys. 14, 537–541 (2018).CAS
Google Scholar
3.Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509–512 (2012).ADS
CAS
Google Scholar
4.Tsunoda, N. et al. Exotic neutron-rich medium-mass nuclei with realistic nuclear forces. Phys. Rev. C 95, 021304(R) (2017).ADS
Google Scholar
5.Goeppert Mayer, M. On closed shells in nuclei. II. Phys. Rev. 75, 1969 (1949).ADS
CAS
Google Scholar
6.Haxel, O., Jensen, J. H. D. & Suess, H. E. On the “magic numbers” in nuclear structure. Phys. Rev. 75, 1766 (1949).ADS
CAS
Google Scholar
7.Rainwater, J. Nuclear energy level argument for a spheroidal nuclear model. Phys. Rev. 79, 432 (1950).ADS
CAS
MATH
Google Scholar
8.Bohr, A. & Mottelson, B. R. Nuclear Structure Vol. II (Benjamin, 1975).9.Casten, R. F. Nuclear Structure From A Simple Perspective (Oxford Univ. Press, 2000).10.Thibault, C. et al. Direct measurement of the masses of 11Li and 26–32Na with an on-line mass spectrometer. Phys. Rev. C 12, 644–657 (1975).ADS
CAS
Google Scholar
11.Guillemaud-Mueller, D. et al. β-Decay schemes of very neutron-rich sodium isotopes and their descendants. Nucl. Phys. A 426, 37–76 (1984).ADS
Google Scholar
12.Warburton, E. K., Becker, J. A. & Brown, B. A. Mass systematics for A = 29–44 nuclei: the deformed A ~ 32 region. Phys. Rev. C 41, 1147 (1990).ADS
CAS
Google Scholar
13.Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. & Zuker, A. P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427–488 (2005).ADS
CAS
Google Scholar
14.Heyde, K. & Wood, J. L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467 (2011).ADS
CAS
Google Scholar
15.Tanihata, I. et al. Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676–2679 (1985).ADS
CAS
Google Scholar
16.Hansen, P. G. & Jonson, B. The neutron halo of extremely neutron-rich nuclei. Europhys. Lett. 4, 409 (1987).ADS
CAS
Google Scholar
17.Gade, A. & Glasmacher, T. In-beam nuclear spectroscopy of bound states with fast exotic ion beams. Prog. Part. Nucl. Phys. 60, 161–224 (2008).ADS
CAS
Google Scholar
18.Nakamura, T., Sakurai, T. & Watanabe, H. Exotic nuclei explored at in-flight separators. Prog. Part. Nucl. Phys. 97, 53–122 (2017).ADS
CAS
Google Scholar
19.Takayanagi, K. Effective interaction in non-degenerate model space. Nucl. Phys. A 852, 61–81 (2011).ADS
Google Scholar
20.Takayanagi, K. Effective Hamiltonian in the extended Krenciglowa-Kuo method. Nucl. Phys. A 864, 91–112 (2011).ADS
Google Scholar
21.Tsunoda, N., Takayanagi, K., Hjorth-Jensen, M. & Otsuka, T. Multi-shell effective interactions. Phys. Rev. C 89, 024313 (2014).ADS
Google Scholar
22.Machleidt, R. & Entem, D. R. Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1 (2011).ADS
CAS
Google Scholar
23.Otsuka, T., Suzuki, T., Holt, J. A., Schwenk, A. & Akaishi, Y. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 032501 (2010).ADS
Google Scholar
24.Fujita, J. & Miyazawa, H. Pion theory of three-body forces. Prog. Theor. Phys. 17, 360 (1957).ADS
MathSciNet
CAS
MATH
Google Scholar
25.Stroberg, S. R. et al. Nucleus-dependent valence-space approach to nuclear structure. Phys. Rev. Lett. 118, 032502 (2017).ADS
CAS
Google Scholar
26.Simonis, J., Stroberg, S. R., Hebeler, K., Holt, J. D. & Schwenk, A. Saturation with chiral interactions and consequences for finite nuclei. Phys. Rev. C 96, 014303 (2017).ADS
Google Scholar
27.Otsuka, T., Gade, A., Sorlin, O., Suzuki, T. & Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020).ADS
CAS
Google Scholar
28.Loelius, C. et al. Enhanced electric dipole strength for the weakly bound states in 27Ne. Phys. Rev. Lett. 121, 262501 (2018).ADS
CAS
Google Scholar
29.Fernández-Domínguez, B. et al. Re-examining the transition into the N = 20 island of inversion: structure of 30Mg. Phys. Lett. B 779, 124 (2018).ADS
Google Scholar
30.Xu, Z. Y. et al. Nuclear moments of the low-lying isomeric 1+ state of 34Al: Investigation on the neutron 1p1h excitation across N = 20 in the island of inversion. Phys. Lett. B 782, 619 (2018).ADS
CAS
Google Scholar
31.Murray, I. et al. Spectroscopy of strongly deformed 32Ne by proton knockout reactions. Phys. Rev. C 99, 011302(R) (2019).ADS
Google Scholar
32.Nishibata, H. et al. Structure of 31Mg: shape coexistence revealed by β-γ spectroscopy with spin-polarized 31Na. Phys. Rev. C 99, 024322 (2019).ADS
CAS
Google Scholar
33.Shimizu, N., Mizusaki, T., Utsuno, Y. & Tsunoda, Y. Thick-restart block Lanczos method for large-scale shell-model calculations. Comput. Phys. Commun. 244, 372–384 (2019).ADS
CAS
Google Scholar
34.Otsuka, T., Honma, M., Mizusaki, T., Shimizu, N. & Utsuno, Y. Monte Carlo shell model for atomic nuclei. Prog. Part. Nucl. Phys. 47, 319–400 (2001).ADS
CAS
Google Scholar
35.Shimizu, N. et al. New-generation Monte Carlo shell model for the K computer era. Prog. Theor. Exp. Phys. 2012, 01A205 (2012).
Google Scholar
36.Marsh, B. A. et al. Characterization of the shape-starggering effect in mercury nuclei. Nat. Phys. 14, 1163–1167 (2018).CAS
Google Scholar
37.Ichikawa, Y. et al. Interplay between nuclear shell evolution and shape deformation revealed by the magnetic moment of 75Cu. Nat. Phys. 15, 321–325 (2019).CAS
Google Scholar
38.Taniuchi, R. et al. 78Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 569, 53–58 (2019).ADS
CAS
Google Scholar
39.Ahn, D. S. et al. Location of the neutron dripline at fluorine and neon. Phys. Rev. Lett. 123, 212501 (2019).ADS
CAS
Google Scholar
40.Koura, H. et al. Nuclidic mass formula on a spherical basis with an improved even-odd term. Prog. Theor. Phys. 113, 305–325 (2005).ADS
CAS
Google Scholar
41.Otsuka, T., Suzuki, T., Fujimoto, R., Grawe, H. & Akaishi, Y. Evolution of the nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005).ADS
Google Scholar
42.Fauerbach, M. et al. New search for 26O. Phys. Rev. C 53, 647–651 (1996).ADS
CAS
Google Scholar
43.Sakurai, H. et al. Evidence for particle stability of 31F and particle instability of 25N and 28O. Phys. Lett. B 448, 180–184 (1999).ADS
CAS
Google Scholar
44.Dobaczewski, J., Michel, N., Nazarewicz, W., Płoszajczak, M. & Rotureau, J. Shell structure of exotic nuclei. Prog. Part. Nucl. Phys. 59, 432–445 (2007).ADS
CAS
Google Scholar
45.Caurier, E., Nowacki, F. & Poves, A. Merging of the islands of inversion at N = 20 and N = 28. Phys. Rev. C 90, 014302 (2014).ADS
Google Scholar
46.Jahn, H. A. & Teller, E. Stability of polyatomic molecules in degenerate electronic states. I—Orbital degeneracy. Proc. R. Soc. Lond. A 161, 220 (1937).ADS
CAS
MATH
Google Scholar
47.Crawford, H. L. et al. First spectroscopy of the near drip-line nucleus 40Mg. Phys. Rev. Lett. 122, 052501 (2019).
Google Scholar
48.Nakamura, T. et al. Deformation-driven p-wave halos at the drip line: 31Ne. Phys. Rev. Lett. 112, 142501 (2014).ADS
CAS
Google Scholar
49.Bohr, A. & Mottelson, B. R. Nuclear Structure Vol. I (Benjamin, 1969).50.Otsuka, T., Tsunoda, Y., Abe, T., Shimizu, N. & Van Duppen, P. Underlying structure of collective bands and self-organization in quantum systems. Phys. Rev. Lett. 123, 222502 (2019).ADS
CAS
Google Scholar
51.Hjorth-Jensen, M., Kuo, T. T. S. & Osnes, E. Realistic effective interactions for nuclear systems. Phys. Rep. 261, 125–270 (1995).ADS
CAS
Google Scholar
52.Krenciglowa, E. M. & Kuo, T. T. S. Convergence of effective Hamiltonian expansion and partial summations of folded diagrams. Nucl. Phys. A 235, 171–189 (1974).ADS
Google Scholar
53.Entem, D. R. & Machleidt, R. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001 (2003).ADS
Google Scholar
54.Bogner, S., Kuo, T. T. S., Coraggio, L., Covello, A. & Itaco, N. Low momentum nucleon-nucleon potential and shell model effective interactions. Phys. Rev. C 65, 051301 (2002).ADS
Google Scholar
55.Nogga, A., Bogner, S. K. & Schwenk, A. Low-momentum interaction in few-nucleon systems. Phys. Rev. C 70, 061002 (2004).ADS
Google Scholar
56.Carlson, J. et al. Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067 (2015).ADS
MathSciNet
CAS
Google Scholar
57.Pastore, S. et al. Quantum Monte Carlo calculations of weak transitions in A = 6–10 nuclei. Phys. Rev. C 97, 022501 (2018).ADS
CAS
Google Scholar
58.Ekström, A., Hagen, G., Morris, T. D., Papenbrock, T. & Schwartz, P. D. Δ isobars and nuclear saturation. Phys. Rev. C 97, 024332 (2018).ADS
Google Scholar
59.Honma, M., Otsuka, T., Brown, B. A. & Mizusaki, T. Effective interaction for pf-shell nuclei. Phys. Rev. C 65, 061301 (2002).ADS
Google Scholar
60.Notani, M. et al. New neutron-rich isotopes, 34Ne, 37Na and 43Si, produced by fragmentation of a 64 A MeV 48Ca beam. Phys. Lett. B 542, 49–54 (2002).ADS
CAS
Google Scholar
61.Baumann, T. et al. Discovery of 40Mg and 42Al suggests neutron drip-line slant towards heavier isotopes. Nature 449, 1022–1024 (2007).ADS
CAS
Google Scholar
62.Hagen, G. et al. Neutron and weak-charge distributions of the 48Ca nucleus, estimated uncertainties from truncations of employed method and model space. Nat. Phys. 12, 186–190 (2016).CAS
Google Scholar
63.Hergert, H., Binder, S., Calci, A., Langhammer, J. & Roth, R. Ab initio calculations of even oxygen isotopes with chiral two-plus-three-nucleon interactions. Phys. Rev. Lett. 110, 242501 (2013).ADS
CAS
Google Scholar
64.Hergert, H. et al. Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes. Phys. Rev. C 90, 041302 (2014).ADS
Google Scholar
65.Stroberg, S. R., Hergert, H., Bogner, S. K. & Holt, J. D. Nonempirical interactions for the nuclear shell model: an update. Annu. Rev. Nucl. Part. Sci. 69, 307–362 (2019).ADS
CAS
Google Scholar
66.Simonis, J., Hebeler, K., Holt, J. D., Menendez, J. & Schwenk, A. Exploring sd-shell nuclei from two- and three-nucleon interactions with realistic saturation properties. Phys. Rev. C 93, 011302 (2016).ADS
Google Scholar
67.Morris, T. D. et al. Structure of the lightest tin isotopes. Phys. Rev. Lett. 120, 152503 (2018).ADS
CAS
Google Scholar
68.Holt, J. D., Menendez, J., Simonis, J. & Schwenk, A. Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes. Phys. Rev. C 90, 024312 (2014).ADS
Google Scholar
69.Smirnova, N. A. et al. Effective interactions in the sd shell. Phys. Rev. C 100, 054329 (2019).ADS
CAS
Google Scholar
70.Dikmen, E. et al. Ab initio effective interactions for sd-shell valence nucleons. Phys. Rev. C 91, 064301 (2015).ADS
Google Scholar
71.Hergert, H., Bogner, S. K., Morris, T. D., Schwenk, A. & Tsukiyama, K. The in-medium similarity renormalization group: a novel ab initio method for nuclei. Phys. Rep. 621, 165–222 (2016).ADS
MathSciNet
CAS
Google Scholar
72.Epelbaum, E., Hammer, H.-W. & Meißner, Ulf-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773 (2009).ADS
CAS
Google Scholar
73.Bogner, S. K. et al. Nonperturbative shell-model interactions from the in-medium similarity renormalization group. Phys. Rev. Lett. 113, 142501 (2014).ADS
CAS
Google Scholar
74.Jansen, G. R., Engel, J., Hagen, G., Navratil, P. & Signoracci, A. Ab initio coupled-cluster effective interactions for the shell model: application to neutron-rich oxygen and carbon isotopes. Phys. Rev. Lett. 113, 142502 (2014).ADS
CAS
Google Scholar
75.Stroberg, S. R., Hergert, H., Holt, J. D., Bogner, S. K. & Schwenk. A. Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians. Phys. Rev. C 93, 051301(R) (2016).ADS
Google Scholar
76.Coraggio, L., Gargano, A. & Itaco, N. Double-step truncation procedure for large-scale shell-model calculations. Phys. Rev. C 93, 064328 (2016).ADS
Google Scholar
77.Hebeler, K., Bogner, S. K., Furnstahl, R. J., Nogga, A. & Schwenk, A. Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 83, 031301 (2011).ADS
Google Scholar
78.van Kolck, U. Few-nucleon forces from chiral Lagrangians. Phys. Rev. C 49, 2932 (1994).ADS
Google Scholar
79.Epelbaum, E. et al. Three-nucleon forces from chiral effective field theory. Phys. Rev. C 66, 064001 (2002).ADS
Google Scholar
80.Gazit, D., Quaglioni, S. & Navrátil, P. Three-nucleon low-energy constants from the consistency of interactions and currents in chiral effective field theory. Phys. Rev. Lett. 103, 102502 (2009); erratum 122, 029901 (2019).ADS
Google Scholar
81.Kohno, M. Nuclear and neutron matter G-matrix calculations with a chiral effective field theory potential including effects of three-nucleon interactions. Phys. Rev. C 88, 064005 (2013); erratum 96, 059903 (2017).ADS
Google Scholar
82.Bogner, S. K., Furnstahl, R. J. & Perry, R. J. Similarity renormalization group for nucleon-nucleon interactions. Phys. Rev. C 75, 061001(R) (2007).ADS
Google Scholar
83.Bogner, S. K., Furnstahl, R. J., Ramanan, S. & Schwenk, A. Low-momentum interactions with smooth cutoffs. Nucl. Phys. A 784, 79–103 (2007).ADS
Google Scholar
84.Wildenthal, B. H. & Chung, W. Collapse of the conventional shell-model ordering in the very-neutron-rich isotopes of Na and Mg. Phys. Rev. C 22, 2260 (1980).ADS
CAS
Google Scholar
85.Watt, A., Singhal, R. P., Storm, M. H. & Whitehead, R. R. A shell-model investigation of the binding energies of some exotic isotopes of sodium and magnesium. J. Phys. G 7, L145–L148 (1981).ADS
CAS
Google Scholar
86.Utsuno, Y., Otsuka, T., Mizusaki, T. & Honma, M. Varying shell gap and deformation in N ~ 20 unstable nuclei studied by the Monte Carlo shell model. Phys. Rev. C 60, 054315 (1999).ADS
Google Scholar
87.Motobayashi, T. et al. Large deformation of the very neutron-rich nucleus 32Mg from intermediate-energy Coulomb excitation. Phys. Lett. B 346, 9–14 (1995).ADS
CAS
Google Scholar
88.Gade, A. et al. Spectroscopy of 36Mg: interplay of normal and intruder configurations at the neutron-rich boundary of the “island of inversion”. Phys. Rev. Lett. 99, 072502 (2007).ADS
CAS
Google Scholar
89.Doornenbal, P. et al. Spectroscopy of 32Ne and the “island of inversion”. Phys. Rev. Lett. 103, 032501 (2009).ADS
CAS
Google Scholar
90.Nakamura, T. et al. Halo structure of the island of inversion nucleus 31Ne. Phys. Rev. Lett. 103, 262501 (2009).ADS
CAS
Google Scholar
91.Doornenbal, P. et al. In-beam γ-ray spectroscopy of 34,36,38Mg: merging the N = 20 and N = 28 shell quenching. Phys. Rev. Lett. 111, 212502 (2013).ADS
CAS
Google Scholar
92.Kobayashi, N. et al. Observation of a p-wave one-neutron halo configuration in 37Mg. Phys. Rev. Lett. 112, 242501 (2014).ADS
CAS
Google Scholar
93.Crawford, H. L. et al. Rotational band structure in 32Mg. Phys. Rev. C 93, 031303(R) (2016).ADS
Google Scholar
94.Doornenbal, P. et al. Low-Z shore of the “island of inversion” and the reduced neutron magicity toward 28O. Phys. Rev. C 95, 041301(R) (2017).ADS
Google Scholar
Source: http://feeds.nature.com/~r/nature/rss/current/~3/bd2_iMRN8YE/s41586-020-2848-x