1.Ooyama, K. Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 3–40 (1969).ADS
Google Scholar
2.Emanuel, K. A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 43, 585–605 (1986).ADS
Google Scholar
3.Emanuel, K. Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31, 75–104 (2003).ADS
CAS
Google Scholar
4.Kaplan, J. & DeMaria, M. A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteorol. Climatol. 34, 2499–2512 (1995).ADS
Google Scholar
5.Kaplan, J. & DeMaria, M. On the decay of tropical cyclone winds after landfall in the New England area. J. Appl. Meteorol. Climatol. 40, 280–286 (2001).ADS
Google Scholar
6.Emanuel, K. A. The dependence of hurricane intensity on climate. Nature 326, 483–485 (1987).ADS
Google Scholar
7.Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).ADS
CAS
PubMed
Google Scholar
8.Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).ADS
CAS
PubMed
Google Scholar
9.Knutson, T. et al. Tropical cyclones and climate change assessment: Part I. Detection and attribution. Bull. Am. Meteorol. Soc. 100, 1987–2007 (2019).ADS
Google Scholar
10.Bhatia, K. T. et al. Recent increases in tropical cyclone intensification rates. Nat. Commun. 10, 3942 (2019).ADS
PubMed
PubMed Central
Google Scholar
11.Landsea, C. W. & Franklin, J. L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weath. Rev. 141, 3576–3592 (2013).ADS
Google Scholar
12.Rayner, N. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).ADS
Google Scholar
13.Eliassen, A. On the Ekman layer in a circular vortex. J. Meteorol. Soc. Jpn. 49A, 784–789 (1971).
Google Scholar
14.Eliassen, A. & Lystad, M. The Ekman layer of a circular vortex—a numerical and theoretical study. Geophys. Norv. 31, 1–16 (1977).ADS
Google Scholar
15.Montgomery, M. T., Snell, H. D. & Yang, Z. Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci. 58, 421–435 (2001).ADS
Google Scholar
16.Murakami, H. & Wang, B. Future change of North Atlantic tropical cyclone tracks: projection by a 20-km-mesh global atmospheric model. J. Clim. 23, 2699–2721 (2010).ADS
Google Scholar
17.Colbert, A. J., Soden, B. J., Vecchi, G. A. & Kirtman, B. P. The impact of anthropogenic climate change on North Atlantic tropical cyclone tracks. J. Clim. 26, 4088–4095 (2013).ADS
Google Scholar
18.Wallace, J. M. & Hobbs, P. V. Atmospheric Science: An Introductory Survey Vol. 92 (Elsevier, 2006).19.Tuleya, R. E. & Kurihara, Y. A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci. 35, 242–257 (1978).ADS
Google Scholar
20.Tuleya, R. E. Tropical storm development and decay: sensitivity to surface boundary conditions. Mon. Weath. Rev. 122, 291–304 (1994).ADS
Google Scholar
21.Simpson, R. H. & Riehl, H. The Hurricane And Its Impact (Louisiana State Univ. Press, 1981).22.Bloemer, M. S. Climatology and Analysis of the Decay of Tropical Cyclones Making Landfall in the US from the Atlantic Basin. Master’s thesis, Florida State Univ. (2009).23.Chen, J. & Chavas, D. R. The transient responses of an axisymmetric tropical cyclone to instantaneous surface roughening and drying. J. Atmos. Sci. 77, 2807–2834 (2020).ADS
Google Scholar
24.Smith, S. W. The Scientist And Engineer’s Guide To Digital Signal Processing Ch. 15 (California Technical Pub., 1997).25.Bryan, G. H. & Fritsch, J. M. A benchmark simulation for moist nonhydrostatic numerical models. Mon. Weath. Rev. 130, 2917–2928 (2002).ADS
Google Scholar
26.Bryan, G. H. & Rotunno, R. The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Weath. Rev. 137, 1770–1789 (2009).ADS
Google Scholar
27.Bryan, G. H. Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Weath. Rev. 140, 1125–1143 (2012).ADS
Google Scholar
28.Emanuel, K. Assessing the present and future probability of hurricane Harvey’s rainfall. Proc. Natl Acad. Sci. USA 114, 12681–12684 (2017).ADS
CAS
PubMed
Google Scholar
29.Keellings, D. & Hernández Ayala, J. J. Extreme rainfall associated with hurricane Maria over Puerto Rico and its connections to climate variability and change. Geophys. Res. Lett. 46, 2964–2973 (2019).ADS
Google Scholar
30.Kossin, J. P. A global slowdown of tropical-cyclone translation speed. Nature 558, 104–107 (2018).ADS
CAS
PubMed
Google Scholar
31.Zhang, G., Murakami, H., Knutson, T. R., Mizuta, R. & Yoshida, K. Tropical cyclone motion in a changing climate. Sci. Adv. 6, eaaz7610 (2020).ADS
PubMed
PubMed Central
Google Scholar
32.Elsner, J. B. Tracking hurricanes. Bull. Am. Meteorol. Soc. 84, 353–356 (2003).ADS
Google Scholar
33.Kossin, J. P., Camargo, S. J. & Sitkowski, M. Climate modulation of North Atlantic hurricane tracks. J. Clim. 23, 3057–3076 (2010).ADS
Google Scholar
34.Rogers, R. E. & Davis, R. E. The effect of coastline curvature on the weakening of Atlantic tropical cyclones. Int. J. Climatol. 13, 287–299 (1993).
Google Scholar
35.Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).ADS
CAS
PubMed
Google Scholar
36.Ho, F. P., Su, J. C., Hanevich, K. L., Smith, R. J. & Richards, F. P. Hurricane climatology for the Atlantic and Gulf coasts of the United States. NOAA Technical Report NWS 38, https://coast.noaa.gov/data/hes/images/pdf/ATL_GULF_HURR_CLIMATOLOGY.pdf (1987).37.Weinkle, J., Maue, R. & Pielke, R., Jr. Historical global tropical cyclone landfalls. J. Clim. 25, 4729–4735 (2012).ADS
Google Scholar
38.Klotzbach, P. J., Bowen, S. G., Pielke, R., Jr & Bell, M. Continental US hurricane landfall frequency and associated damage: observations and future risks. Bull. Am. Meteorol. Soc. 99, 1359–1376 (2018).ADS
Google Scholar
39.Neumann, C. An update to the National Hurricane Center “Track Book”. In Minutes of the 48th Interdepartmental Conference A-47–A-53 (Office of Fed. Coord. for Meteor. Services and Supporting Research, NOAA, 1994).40.Chavas, D. land_or_ocean.m. MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/45268-land_or_ocean-m (2020).41.Schreck, C. J. III, Knapp, K. R. & Kossin, J. P. The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Weath. Rev. 142, 3881–3899 (2014).ADS
Google Scholar
42.Nolan, D. S., Zhang, J. A. & Uhlhorn, E. W. On the limits of estimating the maximum wind speeds in hurricanes. Mon. Weath. Rev. 142, 2814–2837 (2014).ADS
Google Scholar
43.Jin, F.-F., Boucharel, J. & Lin, I.-I. Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature 516, 82–85 (2014).ADS
CAS
PubMed
Google Scholar
44.Dunion, J. P. Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Clim. 24, 893–908 (2011).ADS
Google Scholar
45.Miyamoto, Y. & Takemi, T. An effective radius of the sea surface enthalpy flux for the maintenance of a tropical cyclone. Atmos. Sci. Lett. 11, 278–282 (2010).ADS
Google Scholar
46.Yuan, S., Zhong, Z., Yao, H., Yuan, W. & Xiaodan, W. The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity. J. Meteor. Res. 27, 40–49 (2013).
Google Scholar
47.Riehl, H. Tropical Meteorology (McGraw-Hill, 1954).48.Holland, G. J., Belanger, J. I. & Fritz, A. A revised model for radial profiles of hurricane winds. Mon. Weath. Rev. 138, 4393–4401 (2010).ADS
Google Scholar
49.Khairoutdinov, M. & Emanuel, K. Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst. 5, 816–825 (2013).ADS
Google Scholar
50.Chavas, D. R. & Emanuel, K. Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. J. Atmos. Sci. 71, 1663–1680 (2014).ADS
Google Scholar
51.Chavas, D. R., Lin, N., Dong, W. & Lin, Y. Observed tropical cyclone size revisited. J. Clim. 29, 2923–2939 (2016).ADS
Google Scholar
52.Lanzante, J. R. Uncertainties in tropical-cyclone translation speed. Nature 570, E6–E15 (2019).ADS
CAS
PubMed
Google Scholar
53.Yule, U. & Kendall, M. An Introduction To The Theory Of Statistics Ch. 12 (Griffin and Company, 1950).54.Evans, C. et al. The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Weath. Rev. 145, 4317–4344 (2017).ADS
Google Scholar
55.Lee, S. H., Williams, P. D. & Frame, T. H. Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature 572, 639–642 (2019).ADS
CAS
PubMed
Google Scholar
56.Fairall, C., Bradley, E. F., Hare, J., Grachev, A. & Edson, J. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16, 571–591 (2003).ADS
Google Scholar
57.Donelan, M. et al. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31, L18306 (2004).ADS
Google Scholar
58.Drennan, W. M., Zhang, J. A., French, J. R., McCormick, C. & Black, P. G. Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci. 64, 1103–1115 (2007).ADS
Google Scholar
59.Rotunno, R. & Emanuel, K. A. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 44, 542–561 (1987).ADS
Google Scholar
60.Goldenberg, S. B. & Shapiro, L. J. Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Clim. 9, 1169–1187 (1996).ADS
Google Scholar
Source: http://feeds.nature.com/~r/nature/rss/current/~3/y5Oc3ttfXnA/s41586-020-2867-7