1.Onnes, H. K. The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden 12, 1 (1911).
Google Scholar
2.Ginzburg, V. L. Nobel Lecture: on superconductivity and superfluidity (what I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century. Rev. Mod. Phys. 76, 981–998 (2004).ADS
CAS
Google Scholar
3.Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).ADS
CAS
Google Scholar
4.Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).ADS
CAS
Google Scholar
5.Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).ADS
CAS
Google Scholar
6.Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-T
c superconductivity. Sci. Rep. 4, 6968 (2014).CAS
Google Scholar
7.Strobel, T. A., Ganesh, P., Somayazulu, M., Kent, P. R. C. & Hemley, R. J. Novel cooperative interactions and structural ordering in H2S–H2. Phys. Rev. Lett. 107, 255503 (2011).ADS
Google Scholar
8.Bi, T., Zarifi, N., Terpstra, T. & Zurek, E. The search for superconductivity in high pressure hydrides. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering https://doi.org/10.1016/B978-0-12-409547-2.11435-0 (Elsevier, 2019).9.Sun, Y., Lv, J., Xie, Y., Liu, H. & Ma, Y. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett. 123, 097001 (2019).ADS
CAS
Google Scholar
10.Pickard, C. J., Errea, I. & Eremets, M. I. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).CAS
Google Scholar
11.Shimizu, K., Suhara, K., Ikumo, M., Eremets, M. I. & Amaya, K. Superconductivity in oxygen. Nature 393, 767–769 (1998).ADS
CAS
Google Scholar
12.Struzhkin, V. V., Hemley, R. J., Mao, H. & Timofeev, Y. A. Superconductivity at 10–17 K in compressed sulphur. Nature 390, 382–384 (1997).ADS
Google Scholar
13.Dias, R. P. et al. Superconductivity in highly disordered dense carbon disulfide. Proc. Natl Acad. Sci. USA 110, 11720–11724 (2013).ADS
CAS
Google Scholar
14.Kim, D. Y., Scheicher, R. H., Mao, H., Kang, T. W. & Ahuja, R. General trend for pressurized superconducting hydrogen-dense materials. Proc. Natl Acad. Sci. USA 107, 2793–2796 (2010).ADS
CAS
Google Scholar
15.Tanaka, K., Tse, J. S. & Liu, H. Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure. Phys. Rev. B 96, 100502 (2017).ADS
Google Scholar
16.Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).ADS
CAS
Google Scholar
17.Dias, R. P. & Silvera, I. F. Observation of the Wigner–Huntington transition to metallic hydrogen. Science 355, 715–718 (2017).ADS
CAS
Google Scholar
18.Eremets, M. I., Drozdov, A. P., Kong, P. P. & Wang, H. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys. 15, 1246–1249 (2019).CAS
Google Scholar
19.Zaghoo, M., Salamat, A. & Silvera, I. F. Evidence of a first-order phase transition to metallic hydrogen. Phys. Rev. B 93, 155128 (2016).ADS
Google Scholar
20.Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. USA 109, 6463–6466 (2012).ADS
CAS
Google Scholar
21.Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-T
c superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. USA 114, 6990–6995 (2017).ADS
CAS
Google Scholar
22.Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).ADS
Google Scholar
23.Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).ADS
Google Scholar
24.Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).ADS
CAS
Google Scholar
25.Cui, W. et al. Route to high-Tc superconductivity via CH4-intercalated H3S hydride perovskites. Phys. Rev. B 101, 134504 (2020).ADS
CAS
Google Scholar
26.Sun, Y. et al. Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation. Phys. Rev. B 101, 174102 (2020).ADS
CAS
Google Scholar
27.Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).CAS
Google Scholar
28.Little, W. A. Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1964).ADS
Google Scholar
29.Ginzburg, V. L. On surface superconductivity. Phys. Lett. 13, 101–102 (1964).ADS
CAS
Google Scholar
30.Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 310 GPa. J. Appl. Phys. 100, 043516 (2006).ADS
Google Scholar
31.Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349–1354 (2019).ADS
CAS
Google Scholar
32.Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science 366, 1359–1362 (2019).ADS
CAS
Google Scholar
33.Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 366, 1355–1359 (2019).ADS
CAS
Google Scholar
34.Mozaffari, S. et al. Superconducting phase diagram of H3S under high magnetic fields. Nat. Commun. 10, 2522 (2019).ADS
Google Scholar
35.Eckert, B. & Schumacher, R., Jodl, H. J. & Foggi, P. Pressure and photo-induced phase transitions in sulphur investigated by Raman spectroscopy. High Press. Res. 17, 113–146 (2000).ADS
Google Scholar
36.Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. High-pressure compounds in methane-hydrogen mixtures. Science 271, 1400–1402 (1996).ADS
CAS
Google Scholar
37.Kearney, J. S. C. et al. Pressure-tuneable visible-range band gap in the ionic spinel tin nitride. Angew. Chem. Int. Ed. 57, 11623–11628 (2018).CAS
Google Scholar
38.Spiekermann, G. et al. Persistent octahedral coordination in amorphous GeO2 up to 100 GPa by Kβ″ X-ray emission spectroscopy. Phys. Rev. X 9, 011025 (2019).CAS
Google Scholar
39.Dias, R. P., Noked, O. & Silvera, I. F. Quantum phase transition in solid hydrogen at high pressure. Phys. Rev. B 100, 184112 (2019).ADS
CAS
Google Scholar
40.Dias, R. P., Noked, O. & Silvera, I. F. New phases and dissociation-recombination of hydrogen deuteride to 3.4 Mbar. Phys. Rev. Lett. 116, 145501 (2016).ADS
Google Scholar
41.Frank, R. B. in Mössbauer Effect Methodology 151–180 (Springer, 1976).42.Debessai, M., Hamlin, J. J. & Schilling, J. S. Comparison of the pressure dependences of T
c in the trivalent d-electron superconductors Sc, Y, La, and Lu up to megabar pressures. Phys. Rev. B 78, 064519 (2008).ADS
Google Scholar
43.Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).ADS
MathSciNet
Google Scholar
44.Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).ADS
MathSciNet
Google Scholar
45.Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).ADS
Google Scholar
46.Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).
Google Scholar
47.Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).ADS
CAS
Google Scholar
48.Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).ADS
Google Scholar
49.Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).CAS
Google Scholar
50.Froyen, S. & Cohen, M. Structural properties of NaCl and KCl under pressure. J. Phys. C 19, 2623–2632 (1986).ADS
CAS
Google Scholar
51.Dacosta, P. G., Nielsen, O. H. & Kunc, K. Stress theorem in the determination of static equilibrium by the density functional method. J. Phys. C 19, 3163–3172 (1986).ADS
Google Scholar
52.Vanderbilt, D. Absence of large compressive stress on Si(111). Phys. Rev. Lett. 59, 1456–1459 (1987).ADS
CAS
Google Scholar
53.Francis, G. P. & Payne, M. C. Finite basis set corrections to total energy pseudopotential calculations. J. Phys. Condens. Matter 2, 4395–4404 (1990).ADS
Google Scholar
54.Hazen, R. M., Mao, H. K., Finger, L. W. & Bell, P. M. Structure and compression of crystalline methane at high pressure and room temperature. Appl. Phys. Lett. 37, 288–289 (1980).ADS
CAS
Google Scholar
55.Zhou, D. et al. Elastic properties of single crystal hydrogen sulfide: a Brillouin scattering study under high pressure-temperature. J. Appl. Phys. 124, 125901 (2018).ADS
Google Scholar
56.Pratesi, G., Ulivi, L., Barocchi, F., Loubeyre, P. & Le Toullec, R. Hyperacoustic velocity of fluid hydrogen at high pressure. J. Phys. Condens. Matter 9, 10059–10064 (1997).ADS
CAS
Google Scholar
57.Darkrim, F. & Levesque, D. Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J. Chem. Phys. 109, 4981–4984 (1998).ADS
CAS
Google Scholar
58.Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. High-pressure compounds in methane-hydrogen mixtures. Science 271, 1400–1402 (1996).ADS
CAS
Google Scholar
59.Pace, E. J. et al. Properties and phase diagram of (H2S)2H2. Phys. Rev. B 101, 174511 (2020).ADS
CAS
Google Scholar
60.Das, A. et al. The H2S dimer is hydrogen-bonded: direct confirmation from microwave spectroscopy. Angew. Chem. Int. Ed. 57, 15199–15203 (2018).CAS
Google Scholar
61.Bernal, J. D. & Fowler, R. H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).ADS
CAS
Google Scholar
Source: http://feeds.nature.com/~r/nature/rss/current/~3/KbgKHJfn2pQ/s41586-020-2801-z