1.Clark, T. D. et al. Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370–375 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
2.Munday, P. L., Jarrold, M. D. & Nagelkerken, I. in Fish Physiology: Carbon Dioxide Vol. 37 (eds Grosell, M. et al.) 323–368 (Elsevier, 2019).3.Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl Acad. Sci. USA 106, 1848–1852 (2009).ADS
CAS
PubMed
PubMed Central
Google Scholar
4.Munday, P. L. et al. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107, 12930–12934 (2010).ADS
CAS
Google Scholar
5.Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13, 68–75 (2010).PubMed
PubMed Central
Google Scholar
6.Munday, P. L. et al. Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water. PeerJ 4, e2501 (2016).PubMed
PubMed Central
Google Scholar
7.Jarrold, M. D., Humphrey, C., McCormick, M. I. & Munday, P. L. Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification. Sci. Rep. 7, 10153 (2017).ADS
PubMed
PubMed Central
Google Scholar
8.McMahon, S. J., Donelson, J. M. & Munday, P. L. Food ration does not influence the effect of elevated CO2 on antipredator behaviour of a reef fish. Mar. Ecol. Prog. Ser. 586, 155–165 (2018).ADS
CAS
Google Scholar
9.Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L. & Fabricius, K. E. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat. Clim. Change 4, 487–492 (2014).ADS
CAS
Article
Google Scholar
10.Ferrari, M. C. O. et al. Predation in high CO2 waters: prey fish from high-risk environments are less susceptible to ocean acidification. Integr. Comp. Biol. 57, 55–62 (2017).CAS
PubMed
PubMed Central
Google Scholar
11.Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980–2986 (2011).ADS
Google Scholar
12.Welch, M. J., Watson, S.-A., Welsh, J. Q., McCormick, M. I. & Munday, P. L. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nat. Clim. Change 4, 1086–1089 (2014).ADS
CAS
Google Scholar
13.Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88, 698–724 (2010).
Google Scholar
14.Ferrari, M. C. O. et al. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Glob. Change Biol. 21, 1848–1855 (2015).ADS
Google Scholar
15.Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).
Google Scholar
16.Roggatz, C. C., Lorch, M., Hardege, J. D. & Benoit, D. M. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Glob. Change Biol. 22, 3914–3926 (2016).ADS
Google Scholar
17.Jutfelt, F., Sundin, J., Raby, G. D., Krång, A.-S. & Clark, T. D. Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol. Evol. 8, 379–390 (2017).
Google Scholar
18.Domenici, P., Allan, B., McCormick, M. I. & Munday, P. L. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol. Lett. 8, 78–81 (2012).CAS
PubMed
PubMed Central
Google Scholar
19.Domenici, P., Allan, B. J. M., Watson, S.-A., McCormick, M. I. & Munday, P. L. Shifting from right to left: the combined effect of elevated CO2 and temperature on behavioural lateralization in a coral reef fish. PLoS ONE 9, e87969 (2014).ADS
PubMed
PubMed Central
Google Scholar
20.Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change 2, 201–204 (2012).ADS
CAS
Google Scholar
21.Ferrari, M. C. O. et al. Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct. Ecol. 26, 553–558 (2012).
Google Scholar
22.Chung, W. S., Marshall, N. J., Watson, S.-A., Munday, P. L. & Nilsson, G. E. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J. Exp. Biol. 217, 323–326 (2014).CAS
PubMed
PubMed Central
Google Scholar
23.Welch, M. & Munday, P. L Raw Data for Olfactory Response of Acanthochromis polyacanthus in a Y-maze Flume (dataset). https://doi.org/10.4225/28/5add60af3a267 (James Cook University, 2018).24.Schunter, C. et al. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish. Nat. Clim. Change 6, 1014–1018 (2016).ADS
CAS
Google Scholar
25.Allan, B. J. M., Miller, G. M., McCormick, M. I., Domenici, P. & Munday, P. L. Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proc. R. Soc. Lond. B 281, 20132179 (2014).
Google Scholar
26.Welch, M. J. & Munday, P. L. Heritability of behavioural tolerance to high CO2 in a coral reef fish is masked by nonadaptive phenotypic plasticity. Evol. Appl. 10, 682–693 (2017).CAS
PubMed
PubMed Central
Google Scholar
27.Stiasny, M. H. et al. Ocean acidification effects on Atlantic cod larval survival and recruitment to the fished population. PLoS ONE 11, e0155448 (2016).PubMed
PubMed Central
Google Scholar
28.Murray, C. S., Wiley, D. & Baumann, H. High sensitivity of a keystone forage fish to elevated CO2 and temperature. Conserv. Physiol. 7, coz084 (2019).PubMed
PubMed Central
Google Scholar
29.Munday, P. L. et al. Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Mar. Biol. 160, 2137–2144 (2013).CAS
Google Scholar
30.Allan, B. J. M., Domenici, P., McCormick, M. I., Watson, S.-A. & Munday, P. L. Elevated CO2 affects predator–prey interactions through altered performance. PLoS ONE 8, e58520 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
31.Benítez, S. et al. Intertidal pool fish Girella laevifrons (Kyphosidae) shown strong physiological homeostasis but shy personality: the cost of living in hypercapnic habitats. Mar. Pollut. Bull. 118, 57–63 (2017).PubMed
PubMed Central
Google Scholar
32.Borges, F. O. et al. Ocean warming and acidification may challenge the riverward migration of glass eels. Biol. Lett. 15, 20180627 (2019).PubMed
PubMed Central
Google Scholar
33.Castro, J. M. et al. Painted goby larvae under high-CO2 fail to recognize reef sounds. PLoS ONE 12, e0170838 (2017).PubMed
PubMed Central
Google Scholar
34.Chivers, D. P. et al. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob. Change Biol. 20, 515–522 (2014).ADS
Google Scholar
35.Ferrari, M. C. O. et al. Putting prey and predator into the CO2 equation—qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecol. Lett. 14, 1143–1148 (2011).PubMed
PubMed Central
Google Scholar
36.Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646 (2013).PubMed
PubMed Central
Google Scholar
37.Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Change 8, 229–233 (2018).ADS
Google Scholar
38.Green, L. & Jutfelt, F. Elevated carbon dioxide alters the plasma composition and behaviour of a shark. Biol. Lett. 10, 20140538 (2014).PubMed
PubMed Central
Google Scholar
39.Hamilton, T. J., Holcombe, A. & Tresguerres, M. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc. R. Soc. B 281, 20132509 (2014).PubMed
PubMed Central
Google Scholar
40.Heuer, R. M., Welch, M. J., Rummer, J. L., Munday, P. L. & Grosell, M. Altered brain ion gradients following compensation for elevated CO2 are linked to behavioural alterations in a coral reef fish. Sci. Rep. 6, 33216 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
41.Hurst, T. P. et al. Elevated CO2 alters behavior, growth, and lipid composition of Pacific cod larvae. Mar. Environ. Res. 145, 52–65 (2019).CAS
PubMed
PubMed Central
Google Scholar
42.Jiahuan, R. et al. Ocean acidification impairs foraging behavior by interfering with olfactory neural signal transduction in black sea bream, Acanthopagrus schlegelii. Front. Physiol. 9, 1592 (2018).PubMed
PubMed Central
Google Scholar
43.Jutfelt, F., Bresolin de Souza, K., Vuylsteke, A. & Sturve, J. Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8, e65825 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
44.Lai, F., Jutfelt, F. & Nilsson, G. E. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv. Physiol. 3, cov018 (2015).PubMed
PubMed Central
Google Scholar
45.Laubenstein, T. D., Rummer, J. L., McCormick, M. I. & Munday, P. L. A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci. Rep. 9, 4265 (2019).ADS
PubMed
PubMed Central
Google Scholar
46.Lopes, A. F. et al. Behavioural lateralization and shoaling cohesion of fish larvae altered under ocean acidification. Mar. Biol. 163, 243 (2016).
Google Scholar
47.Maulvault, A. L. et al. Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius). Sci. Total Environ. 634, 1136–1147 (2018).ADS
CAS
PubMed
PubMed Central
Google Scholar
48.McCormick, M. I., Watson, S.-A. & Munday, P. L. Ocean acidification reverses competition for space as habitats degrade. Sci. Rep. 3, 3280 (2013).PubMed
PubMed Central
Google Scholar
49.Munday, P. L. et al. Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidif. 1, 1–5 (2012).
Google Scholar
50.Nadler, L. E., Killen, S. S., McCormick, M. I., Watson, S.-A. & Munday, P. L. Effect of elevated carbon dioxide on shoal familiarity and metabolism in a coral reef fish. Conserv. Physiol. 4, cow052 (2016).PubMed
PubMed Central
Google Scholar
51.Näslund, J., Lindstrom, E., Lai, F. & Jutfelt, F. Behavioural responses to simulated bird attacks in marine three-spined sticklebacks after exposure to high CO2 levels. Mar. Freshw. Res. 66, 877–885 (2015).
Google Scholar
52. Ou, M. et al. Responses of pink salmon to CO2-induced aquatic acidification. Nat. Clim. Change 5, 950–955 (2015).ADS
CAS
Google Scholar
53.Paula, J. R. et al. Neurobiological and behavioural responses of cleaning mutualisms to ocean warming and acidification. Sci. Rep. 9, 12728 (2019).ADS
PubMed
PubMed Central
Google Scholar
54.Paula, J. R. et al. The past, present and future of cleaner fish cognitive performance as a function of CO2 levels. Biol. Lett. 15, 20190618 (2019).CAS
PubMed
PubMed Central
Google Scholar
55.Porteus, C. S. et al. Near-future CO2 levels impair the olfactory system of a marine fish. Nat. Clim. Change 8, 737–743 (2018).ADS
CAS
Google Scholar
56.Pistevos, J. C. A., Nagelkerken, I., Rossi, T., Olmos, M. & Connell, S. D. Ocean acidification and global warming impair shark hunting behaviour and growth. Sci. Rep. 5, 16293 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
57.Regan, M. D. et al. Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. J. Exp. Biol. 219, 109–118 (2016).PubMed
PubMed Central
Google Scholar
58.Rossi, T., Nagelkerken, I., Pistevos, J. C. A. & Connell, S. D. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biol. Lett. 12, 20150937 (2016).PubMed
PubMed Central
Google Scholar
59.Rossi, T., Pistevos, J. C. A., Connell, S. D. & Nagelkerken, I. On the wrong track: ocean acidification attracts larval fish to irrelevant environmental cues. Sci. Rep. 8, 5840 (2018).ADS
PubMed
PubMed Central
Google Scholar
60.Schmidt, M. et al. Impact of ocean warming and acidification on the behaviour of two co-occurring gadid species, Boreogadus saida and Gadus morhua, from Svalbard. Mar. Ecol. Prog. Ser. 571, 183–191 (2017).ADS
CAS
Google Scholar
61.Schunter, C. et al. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nat. Ecol. Evol. 2, 334–342 (2018).PubMed
PubMed Central
Google Scholar
62.Simpson, S. D. et al. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol. Lett. 7, 917–920 (2011).CAS
PubMed
PubMed Central
Google Scholar
63.Sundin, J. & Jutfelt, F. 9–28 d of exposure to elevated pCO2 reduces avoidance of predator odour but had no effect on behavioural lateralization or swimming activity in a temperate wrasse (Ctenolabrus rupestris). ICES J. Mar. Sci. 73, 620–632 (2016).
Google Scholar
64.Sundin, J. & Jutfelt, F. Effects of elevated carbon dioxide on male and female behavioural lateralization in a temperate goby. R. Soc. Open Sci. 5, 171550 (2018).ADS
PubMed
PubMed Central
Google Scholar
65.Devine, B. M. & Munday, P. L. Habitat preferences of coral-associated fishes are altered by short-term exposure to elevated CO2. Mar. Biol. 160, 1955–1962 (2013).CAS
Google Scholar
66.Velez, Z., Roggatz, C. C., Benoit, D. M., Hardege, J. D. & Hubbard, P. C. Short- and medium-term exposure to ocean acidification reduces olfactory sensitivity in gilthead seabream. Front. Physiol. 10, 731 (2019).PubMed
PubMed Central
Google Scholar
67.Williams, C. R. et al. Elevated CO2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). Glob. Change Biol. 25, 963–977 (2019).ADS
Google Scholar
Source: http://feeds.nature.com/~r/nature/rss/current/~3/X3nRtwmjjeI/s41586-020-2803-x