1.IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).2.IPCC. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes In Terrestrial Ecosystems (SRCCL) (World Meteorological Organization, 2019).3.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).ADS
Article
Google Scholar
4.Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).Article
Google Scholar
5.IPBES. The IPBES Assessment Report on Land Degradation and Restoration (IPBES Secretariat, 2018).6.Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).ADS
CAS
Article
Google Scholar
7.Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).ADS
CAS
Article
Google Scholar
8.Temperton, V. M. et al. Step back from the forest and step up to the Bonn challenge: how a broad ecological perspective can promote successful landscape restoration. Restor. Ecol. 27, 705–719 (2019).
Google Scholar
9.Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).Article
Google Scholar
10.Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).ADS
Article
Google Scholar
11.Mappin, B. et al. Restoration priorities to achieve the global protected area target. Conserv. Lett. 12, e12646 (2019).Article
Google Scholar
12.Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).ADS
CAS
Article
Google Scholar
13.Joppa, L. N., Visconti, P., Jenkins, C. N. & Pimm, S. L. Achieving the convention on biological diversity’s goals for plant conservation. Science 341, 1100–1103 (2013).ADS
CAS
Article
Google Scholar
14.Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).ADS
CAS
Article
Google Scholar
15.Ando, A., Camm, J., Polasky, S. & Solow, A. Species distributions, land values, and efficient conservation. Science 279, 2126–2128 (1998).ADS
CAS
Article
Google Scholar
16.Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).ADS
CAS
Article
Google Scholar
17.Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).Article
Google Scholar
18.Cabeza, M. & Moilanen, A. Design of reserve networks and the persistence of biodiversity. Trends Ecol. Evol. 16, 242–248 (2001).CAS
Article
Google Scholar
19.European Space Agency. Climate Change Initiative (ESA CCI). https://www.esa-landcover-cci.org/?q=node/158 (accessed May 2018).20.Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).Article
Google Scholar
21.Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).ADS
CAS
Article
Google Scholar
22.Strassburg, B. B. N. et al. Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nat. Clim. Chang. 2, 350–355 (2012).ADS
CAS
Article
Google Scholar
23.Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).Article
Google Scholar
24.IUCN. The IUCN Red List of Threatened Species. Version 2019-3 http://www.iucnredlist.org (accessed 10 December 2019).25.Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).Article
Google Scholar
26.Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).ADS
CAS
Article
Google Scholar
27.Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).CAS
Article
Google Scholar
28.IPCC. in Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 3–24 (World Meteorological Organization, 2018).29.Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).ADS
CAS
Article
Google Scholar
30.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS
CAS
Article
Google Scholar
31.Strassburg, B. B. N. et al. Increasing Agricultural Output While Avoiding Deforestation—A Case Study for Mato Grosso, Brazil (International Institute for Sustainability, 2012).32.Latawiec, A. E., Strassburg, B. B. N., Brancalion, P. H. S., Rodrigues, R. R. & Gardner, T. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13, 211–218 (2015).Article
Google Scholar
33.Anderson, C. B. et al. Determining nature’s contributions to achieve the sustainable development goals. Sustain. Sci. 14, 543–547 (2019).Article
Google Scholar
34.Martín-López, B. et al. Nature’s contributions to people in mountains: a review. PLoS ONE 14, e0217847 (2019).Article
Google Scholar
35.Latawiec, A. E., Strassburg, B. B. N., Valentim, J. F., Ramos, F. & Alves-Pinto, H. N. Intensification of cattle ranching production systems: socioeconomic and environmental synergies and risks in Brazil. Animal 8, 1255–1263 (2014).CAS
Article
Google Scholar
36.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS
CAS
Article
Google Scholar
37.Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477–485 (2018).Article
Google Scholar
38.Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).ADS
CAS
Article
Google Scholar
39.Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).ADS
CAS
Article
Google Scholar
40.Reyes-García, V. et al. The contributions of Indigenous Peoples and local communities to ecological restoration. Restor. Ecol. 27, 3–8 (2019).Article
Google Scholar
41.Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).Article
Google Scholar
42.Beresford, A. et al. Minding the protection gap: estimates of species’ range sizes and holes in the protected area network. Anim. Conserv. 14, 114–116 (2011).Article
Google Scholar
43.Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Phil. Trans. R. Soc. Lond. B 366, 2633–2641 (2011).Article
Google Scholar
44.Di Marco, M. et al. Synergies and trade-offs in achieving global biodiversity targets. Conserv. Biol. 30, 189–195 (2016).Article
Google Scholar
45.Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).CAS
Article
Google Scholar
46.Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article
Google Scholar
47.Joppa, L. N. et al. Filling in biodiversity threat gaps. Science 352, 416–418 (2016).ADS
CAS
Article
Google Scholar
48.Knight, A. T., Cowling, R. M. & Campbell, B. M. An operational model for implementing conservation action. Conserv. Biol. 20, 408–419 (2006).Article
Google Scholar
49.Ban, N. C. et al. A social–ecological approach to conservation planning: embedding social considerations. Front. Ecol. Environ. 11, 194–202 (2013).Article
Google Scholar
50.Halpern, B. S. et al. Achieving the triple bottom line in the face of inherent trade-offs among social equity, economic return, and conservation. Proc. Natl Acad. Sci. USA 110, 6229–6234 (2013).ADS
CAS
Article
Google Scholar
51.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article
Google Scholar
52.Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).ADS
Article
Google Scholar
53.Gibbs, H. K., Brown, S., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).ADS
Article
Google Scholar
54.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185 (2012).ADS
CAS
Article
Google Scholar
55.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).ADS
CAS
Article
Google Scholar
56.Erb, K.-H. et al. A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J. Land Use Sci. 2, 191–224 (2007).Article
Google Scholar
57.IPCC. Guidelines for National Greenhouse Gas Inventories (National Greenhouse Gas Inventories Programme, 2006).58.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article
Google Scholar
59.Harrell, F. E. Jr et al. Hmisc: Harrell Miscellaneous. R package version 4.1-1. https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf (2018).60.Goldewijk, K. K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).Article
Google Scholar
61.Fonseca, W. et al. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For. Ecol. Manage. 262, 1400–1408 (2011).Article
Google Scholar
62.Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).ADS
Article
Google Scholar
63.Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2019).ADS
Article
Google Scholar
64.Mitchard, E. T. et al. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag. 8, 10 (2013).Article
Google Scholar
65.Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article
Google Scholar
66.BirdLife International & NatureServe. Bird Species Distribution Maps of the World. Version 2018.1 http://datazone.birdlife.org/species/requestdis (BirdLife International and Handbook of the Birds of the World, 2018).67.Beresford, A. et al. Poor overlap between the distribution of protected areas and globally threatened birds in Africa. Anim. Conserv. 14, 99–107 (2011).Article
Google Scholar
68.Staude, I. R. et al. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).Article
Google Scholar
69.Carrasco, L. R., Webb, E. L., Symes, W. S., Koh, L. P. & Sodhi, N. S. Global economic trade-offs between wild nature and tropical agriculture. PLoS Biol. 15, e2001657 (2017).Article
Google Scholar
70.Naidoo, R & Iwamura, T. Global-scale mapping of economic benefits from agricultural lands: implications for conservation priorities. Biol. Conserv. 140, 40–49 (2007).Article
Google Scholar
71.Polasky, S. et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 141, 1505–1524 (2008).Article
Google Scholar
72.Sulser, T. B. et al. in Beyond a Middle Income Africa: Transforming African Economies for Sustained Growth with Rising Employment and Incomes (ReSAKSS Annual Trends and Outlook Report 2014 (eds. Badiane, O. et al.) Ch. 2 (International Food Policy Research Institute (IFPRI), 2014).73.Robinson, S. et al. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description for Version 3 (IFPRI Discussion Paper 1483) (International Food Policy Research Institute (IFPRI), (2015).74.IIASA & FAO. Global Agro-ecological Zones (GAEZ v.3.0) (IIASA & FAO, 2012).75.Hoppe, R. A. Structure and Finances of U.S. Farms: Family Farm Report (EIB-132) (US Department of Agriculture Economic Research Service, 2014).76.Baležentis, T. et al. Decomposing dynamics in the farm profitability: an application of index decomposition analysis to Lithuanian FADN sample. Sustainability 11, 2861 (2019).Article
Google Scholar
77.Statistic Canada. Table 32-10-0136-01, Farm Operating Revenues and Expenses, Annual. https://open.canada.ca/data/en/dataset/59ca6332-391b-4fdf-bb3a-31e5e45f6bb7 (2008).78.De Groot, R. S. et al. Benefits of investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).Article
Google Scholar
79.International Labour Organization. ILOSTAT database. https://ilostat.ilo.org/data (accessed March 2020).80.United Nations Statistics Division. UN Comtrade Database. https://comtrade.un.org/ (accessed March 2020).81.Brancalion, P. H. S. et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 240, 108274 (2019).Article
Google Scholar
82.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).ADS
CAS
Article
Google Scholar
83.Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles 31, 245–257 (2017).ADS
CAS
Google Scholar
84.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS
CAS
Article
Google Scholar
85.Hornik, K. et al. SYMPHONY in R, an R interface to the SYMPHONY solver for mixed-integer linear programs. http://R-Forge.R-project.org/projects/rsymphony/ (2019).86.Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).Article
Google Scholar
Source: http://feeds.nature.com/~r/nature/rss/current/~3/0ZVbLi_LN40/s41586-020-2784-9