1.Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).ADS
CAS
PubMed Central
Article
PubMed
Google Scholar
2.Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555, 524–528 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
3.Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
4.Pontious, A., Kowalczyk, T., Englund, C. & Hevner, R. F. Role of intermediate progenitor cells in cerebral cortex development. Dev. Neurosci. 30, 24–32 (2008).CAS
Article
PubMed
PubMed Central
Google Scholar
5.Anderson, S., Mione, M., Yun, K. & Rubenstein, J. L. Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb. Cortex 9, 646–654 (1999).CAS
Article
PubMed
PubMed Central
Google Scholar
6.Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
7.Li, Y., Hu, M. & Shen, Y. Gene regulation in the 3D genome. Hum. Mol. Genet. 27 (R2), R228–R233 (2018).CAS
PubMed Central
Article
PubMed
Google Scholar
8.Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
9.Won, H. et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523–527 (2016).ADS
PubMed Central
Article
CAS
PubMed
Google Scholar
10.Thomsen, E. R. et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat. Methods 13, 87–93 (2016).CAS
Article
Google Scholar
11.Fang, R. et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 26, 1345–1348 (2016).CAS
PubMed Central
Article
PubMed
Google Scholar
12.Juric, I. et al. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLoS Comput. Biol. 15, e1006982 (2019).PubMed Central
Article
CAS
PubMed
Google Scholar
13.Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).CAS
PubMed Central
Article
PubMed
Google Scholar
14.Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).CAS
PubMed Central
Article
PubMed
Google Scholar
15.Lim, L., Mi, D., Llorca, A. & Marín, O. Development and functional diversification of cortical interneurons. Neuron 100, 294–313 (2018).CAS
PubMed Central
Article
PubMed
Google Scholar
16.Liu, S. J. et al. Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol. 17, 67 (2016).PubMed Central
Article
CAS
PubMed
Google Scholar
17.Luo, C. et al. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 17, 3369–3384 (2016).CAS
PubMed Central
Article
PubMed
Google Scholar
18.Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384 (2016).CAS
PubMed Central
Article
PubMed
Google Scholar
19.Choudhary, M. N. et al. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol. 21, 16 (2020).CAS
PubMed Central
Article
PubMed
Google Scholar
20.Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).CAS
PubMed Central
Article
PubMed
Google Scholar
21.Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
22.Bailey, S. D. et al. ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters. Nat. Commun. 2, 6186 (2015).ADS
Article
CAS
Google Scholar
23.Ngondo-Mbongo, R. P., Myslinski, E., Aster, J. C. & Carbon, P. Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11. Nucleic Acids Res. 41, 4000–4014 (2013).CAS
PubMed Central
Article
PubMed
Google Scholar
24.Sundaram, V. & Wang, T. Transposable element mediated innovation in gene regulatory landscapes of cells: re-visiting the “gene-battery” model. BioEssays 40, (2018).25.Davis, C. A. et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 46 (D1), D794–D801 (2018).CAS
Article
Google Scholar
26.Miller, D. J., Bhaduri, A., Sestan, N. & Kriegstein, A. Shared and derived features of cellular diversity in the human cerebral cortex. Curr. Opin. Neurobiol. 56, 117–124 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
27.Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell 173, 1370–1384 (2018).CAS
PubMed Central
Article
PubMed
Google Scholar
28.Rani, N. et al. A Primate lncRNA mediates Notch signaling during neuronal development by sequestering miRNA. Neuron 90, 1174–1188 (2016).CAS
PubMed Central
Article
PubMed
Google Scholar
29.Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–289 (2009).CAS
Article
Google Scholar
30.Reilly, S. K. et al. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347, 1155–1159 (2015).ADS
CAS
PubMed Central
Article
PubMed
Google Scholar
31.Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
32.Walker, R. L. et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell 179, 750–771 (2019).CAS
Article
Google Scholar
33.Hoffman, G. E. et al. CommonMind Consortium provides transcriptomic and epigenomic data for schizophrenia and bipolar disorder. Sci. Data 6, 180 (2019).PubMed Central
Article
CAS
PubMed
Google Scholar
34.Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).CAS
PubMed Central
Article
PubMed
Google Scholar
35.Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).CAS
PubMed Central
Article
PubMed
Google Scholar
36.Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
37.Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
38.Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
39.Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
40.Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).CAS
PubMed Central
Article
PubMed
Google Scholar
41.Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
42.Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).PubMed Central
Article
CAS
PubMed
Google Scholar
43.Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat. Genet. 49, 1421–1427 (2017).CAS
PubMed Central
Article
PubMed
Google Scholar
44.Sey, N. Y. A. et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. 23, 583–593 (2020).CAS
PubMed Central
Article
PubMed
Google Scholar
45.Andersen, O. M. & Willnow, T. E. Lipoprotein receptors in Alzheimer’s disease. Trends Neurosci. 29, 687–694 (2006).CAS
Article
Google Scholar
46.Akbarian, S. Epigenetic mechanisms in schizophrenia. Dialogues Clin. Neurosci. 16, 405–417 (2014).PubMed Central
PubMed
Google Scholar
47.Yang, X. et al. SMART-Q: an integrative pipeline quantifying cell-type-specific RNA transcription. PLoS One 15, e0228760 (2020).CAS
PubMed Central
Article
PubMed
Google Scholar
48.Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).ADS
CAS
PubMed Central
Article
PubMed
Google Scholar
49.Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).ADS
CAS
PubMed Central
Article
PubMed
Google Scholar
50.Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).CAS
PubMed Central
Article
PubMed
Google Scholar
51.Sobhy, H., Kumar, R., Lewerentz, J., Lizana, L. & Stenberg, P. Highly interacting regions of the human genome are enriched with enhancers and bound by DNA repair proteins. Sci. Rep. 9, 4577 (2019).ADS
PubMed Central
Article
CAS
PubMed
Google Scholar
52.Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).CAS
PubMed Central
Article
PubMed
Google Scholar
53.Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 35, W193–W200(2007).PubMed Central
Article
PubMed
Google Scholar
54.Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).CAS
Article
Google Scholar
55.Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).CAS
PubMed Central
Article
PubMed
Google Scholar
56.Diao, Y. et al. A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nat. Methods 14, 629–635 (2017).CAS
PubMed Central
Article
PubMed
Google Scholar
57.Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol Cell 66, 285–299 (2017).CAS
Article
Google Scholar
58.Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).CAS
PubMed Central
Article
PubMed
Google Scholar
59.Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
Source: http://feeds.nature.com/~r/nature/rss/current/~3/aygFornoq-g/s41586-020-2825-4